

2

Executive summary

Introduction
What are AI coding assistants?
Market opportunity
Market landscape and challenges

AI coding assistant types and capabilities
Autocompletion-based coding assistants
Chat-based coding assistants
Agent-based coding assistants

Testing methodology & evaluation metrics
Methodology
Evaluation metrics
Experiment setup

Findings and analysis

Conclusion
Considerations for adoption

About Turing

© 2023 Turing Enterprises, Inc. All rights reserved. All company names, logos, and marks mentioned
herein are the property of their respective owners. The information contained in this document is current
as of 8/27/23. For the most recent updates, please visit www.turing.com. Please contact your Turing
Account Executive for product details. This document is for general informational purposes only. While
we strive to keep the information up-to-date and correct, Turing Enterprises, Inc. makes no
representations or warranties of any kind, express or implied, about the completeness, accuracy,
reliability, suitability, or availability of the information contained herein.

This document is intended for the use of the individual or entity to which it is addressed. If you are not the
intended recipient, any dissemination, distribution, or copying of this document is strictly prohibited
without prior written consent.

Table of
Contents

3

Executive Summary
As businesses strive to improve operational efficiency, speed up time-to-market, and
navigate the challenges of talent acquisition and retention, AI coding assistants have
emerged as a transformative way to maximize their engineering workforce.

This report delves into the adoption landscape of AI, the opportunities afforded to
businesses that adopt it, and the results found in using these coding assistants for
application development productivity. As more businesses recognize the potential of AI to
transform their application development processes, those who adapt quicker have the
opportunity to grow faster than their competition.

Introduction
As the software development industry grapples with challenges around improving
operational efficiency, speeding up time-to-market, and finding and retaining quality talent,
AI coding assistants have emerged as a potential solution.

What are AI coding assistants?
AI coding assistants, or just coding assistants, are software tools that use artificial
intelligence to assist developers in writing code. They can automate repetitive tasks, provide
real-time assistance, and improve code quality.

These tools can suggest code completions, detect and fix errors, and even write code
snippets based on a developer's input. They can also provide insights into coding best
practices and help developers understand complex code written by others.

AI coding assistants are designed to increase developer productivity by reducing the time it
takes to write code and improving the overall quality of the code. They are becoming
increasingly popular in the software development industry as a way to improve operational
efficiency and speed up time-to-market.

4

As organizations strive to improve operational efficiency, speed up time-to-market, and
keep up with technological advancements and industry trends, the demand for AI-powered
solutions is expected to rise. By addressing these pressing needs, AI can carve out a
substantial niche in the application development landscape. Moreover, AI offers a promising
solution to the ongoing struggle of finding and retaining quality application development
talent, further underscoring its market potential.

As businesses across sectors increasingly rely on software for their operations, the demand
for efficient, high-quality, and fast application development is on the rise. AI coding
assistants, specifically, have the potential to solve issues around:

● Efficiency and productivity: AI coding assistants can significantly enhance developer
productivity by automating repetitive tasks, providing real-time coding assistance,
and improving code quality. This can lead to substantial cost savings and efficiency
gains for businesses.

● Talent shortages: The tech industry is facing a talent shortage, especially for skilled
developers. AI coding assistants can help bridge this gap by enabling existing
developers to be more productive and making coding more accessible to people with
diverse skill sets.

● Speed to market: In today's fast-paced digital landscape, getting to market quickly is
crucial. AI coding assistants can speed up the application development process,
helping businesses to launch their products faster and gain a competitive edge.

● Innovation: AI coding assistants can drive innovation by freeing up developers' time to
focus on more complex and creative aspects of application development.

Given these benefits, the market for AI coding assistants is set to expand. As more
businesses recognize the potential of AI to transform their application development
processes, the industry opportunity for providers of these tools will continue to grow.

Market opportunity

Market landscape and challenges

5

By 2030, the global AI market will reach $2 trillion1—a gigantic number, considering its
relatively recent popularization and adoption. Part of that investment is likely based on the
potential for this technology to support application development. Application development
revenue is expected to show an annual growth rate (CAGR 2023–2028) of 7.04%, resulting in
a market volume of $234.7 billion by 20282. We expect companies to increase their spending
as AI capabilities expand to support more application development needs over time.

However, 74% of enterprises are not using or are still evaluating AI solutions3. But with
worldwide IT spending projected to reach $4.6 trillion in 2023 and increasing another 8.6% in
20244, companies who can navigate their investment into AI-powered application
development will be well rewarded.

Investing in building an internal center of excellence for AI coding assistants, or partnering
with external vendors who utilize AI coding assistant-based development, will provide one of
the fastest opportunities to grow your software engineering capabilities. Early data suggests
developers using generative AI–based tools to perform complex tasks were 25 to 30% more
likely to successfully complete versus those without5.

Challenges to adoption include concerns about data security and privacy, the need for
significant upfront monetary and time investment in AI technology and infrastructure, and
the requirement for training and upskilling developers to effectively use these tools.

Despite these challenges, early adopters have reported significant improvements in
operational efficiency and code quality.

1https://www.statista.com/statistics/1365145/artificial-intelligence-market-size/
2https://www.statista.com/outlook/tmo/software/application-development-software/worldwide?currency=usd
3https://www.oreilly.com/radar/ai-adoption-in-the-enterprise-2022/
4https://www.gartner.com/en/newsroom/press-releases/2023-04-06-gartner-forecasts-worldwide-it-spending-to-grow-5-percent-in-2023
5https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai

https://www.statista.com/statistics/1365145/artificial-intelligence-market-size/
https://www.statista.com/outlook/tmo/software/application-development-software/worldwide?currency=usd
https://www.oreilly.com/radar/ai-adoption-in-the-enterprise-2022/
https://www.gartner.com/en/newsroom/press-releases/2023-04-06-gartner-forecasts-worldwide-it-spending-to-grow-5-percent-in-2023
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/unleashing-developer-productivity-with-generative-ai

6

Autocompletion-based coding assistants
Some of the earliest kinds of AI coding assistants generally fall under the scope of
autocompletion-based assistants. Some of the most popular assistants in this category
include Github Copilot, Amazon Code Whisperer, and Codeium. While fine-tuning varies
between different assistants in this group, they are all defined by a few distinct capabilities.

Line-level code autocompletion
This capability predicts and automatically completes lines of code as the developer is
typing. It can reduce the amount of typing required, minimize syntax errors, and help
developers remember and correctly implement various programming constructs and
API calls.

Function-level code autocompletion
This capability predicts and automatically completes entire functions as the developer
is typing. It can suggest function names, parameters, return types, and even the body of
the function.

Block-level code generation
This capability generates entire blocks of code based on the developer's intent. It can create
larger structures of code, such as loops, conditionals, and even entire classes.

AI coding assistant types and capabilities

7

Figure 1 - Autocompletion-based coding assistant capabilities

It's worth noting that the quality of the generated code can vary. These models are typically
trained on common code repositories, which may not always adhere to the specific coding
standards of certain industries or businesses. However, some tools offer the ability to
fine-tune their models based on specific codebases, thus improving their potential for
generating high-quality code.

The developer still needs to design each code module, so the design quality from the
developer plays a critical role in the quality of the output from these products.

Chat-based coding assistants
As large language models (LLMs) continue to evolve, we're seeing the emergence of
chat-based coding assistants—a concept likely inspired by ChatGPT. The process begins
when a developer describes a coding task as a prompt and inputs it into the LLM, which in
turn generates the initial code. The developer and LLM then work together, iteratively refining
the produced code.

Product Line-level code
autocompletion

Function-level code
autocompletion

Block-level code
generation

Fine-tuning
capable?

Amazon
CodeWhisperer ▲ Strong ▲ Strong ⬤ Neutral No

CodeComplete ▲ Strong ⬤ Neutral ⬤ Neutral Yes

Codeium ▲ Strong ▲ Strong ▲ Neutral Yes

FauxPilot ▲ Strong ⬤ Neutral ⬤ Neutral No

Github Copilot ▲ Strong ▲ Strong ▲ Strong No

Google Duet AI ▲ Strong ▲ Strong ▲ Strong Yes

Replit Ghostwriter ▲ Strong ▲ Strong ▲ Strong No

SourceGraph Cody ▲ Strong ▲ Strong ▲ Strong Yes

Tabby ▲ Strong ⬤ Neutral ⬤ Neutral Yes

Tabnine ▲ Strong ▲ Strong ▲ Strong Yes
(enterprise only)

8

Figure 2 - Some of the current chat-based coding assistants in market

Chat-based coding assistants are shaping up as an interesting development in the field of
LLMs, offering new ways to streamline and enhance the coding process.

Agent-based coding assistants
While previous coding assistant methodologies primarily focus on local automation, which
involves partial automation of a developer's work, they often fail to capture intricate aspects
of coding projects such as file dependencies and version control. These methods could
theoretically incorporate such dependencies into tools like ChatGPT, but this approach has
proven to be ineffective so far.

Moreover, it's important to consider the broader context of coding. This process
encompasses more than just writing code—it involves a series of steps both before and
after the coding stage.

Product Details Recommendation

ChatGPT

Noted for its intuitiveness, this product has been embraced by
developer communities worldwide. However, businesses worried
about data security may opt to deploy their own on-prem,
GPT-powered solution.

▲ Strong

Codeium
Chat

Available as a VSCode plugin, Codeium Chat presents an efficient
alternative to raw ChatGPT prompt-based coding. However, there are
considerable constraints regarding the underlying LLM’s coding
ability. The basic version is free to use.

⬤ Neutral

Cody AI Chat
This product has the added benefit of being able to provide sources
for every answer and can be trained on your company’s knowledge
base. It has tight integration with Sourcegraph’s products.

▲ Strong

Copilot Chat

Copilot is currently considered the industry standard. It’s available as
a VSCode plugin with an enterprise plan, with its standard version
integrating directly into Neovim, JetBrains IDEs, Visual Studio, and
Visual Studio Code.

▲ Strong

Cursor

Centered around Chat UX, Cursor signifies an upgrade from GPT
prompt-based coding. While it relies purely on GPT-3 and GPT-4,
other platforms such as Ghostwriter, Tabnine, and Codeium have
developed their own proprietary models.

▲ Strong

Duet AI Chat

Although not released at the time of this publication, Google will also
be releasing a chat-based coding assistant based on Palm-2. It has
great integration with the GCP workstation, so ideal for a remote
developer environment.

▲ Strong

StarCoder This is HuggingFace’s take on a GPT prompt-based solution and has
shown quality akin to GPT-3 outputs. ⬤ Neutral

Tabnine Chat
Tabnine Chat runs inside the IDE and is contextualized to the user’s
code. It boasts the ability to connect to customer repositories while
maintaining security and compliance requirements.

▲ Strong

9

We believe this will be the defining space for application development at an enterprise level,
incorporating the best chat-based and autocompletion-based capabilities into a more
robust development flow that combines human and AI inputs and outputs at every step.

Figure 3 - Turing’s GPT-powered software development flow

Agent-based assistants aim to streamline coding by creating a technical product
requirements document (PRD) that an LLM can interpret and implement for an entire
project. The LLM token limit currently restricts these projects, making it difficult to extend this
approach to more complex tasks. However, with the anticipated increase in GPT-4's token
limit from 100K to 1M, this constraint is expected to diminish.

Figure 4 - Current state of chat-based coding assistants

Product Details

AutoGPT Still in its infancy, AutoGPT shows promise but isn't yet optimized for coding tasks.
However, experimental demos have shown its potential.

GPT Engineer GPT Engineer is made to be easy to adapt, extend, and make your agent learn how
you want your code to look. It generates an entire codebase based on a prompt.

Smol Developer

Smol Developer is considered a prototype "junior developer" agent, scaffolding an
entire codebase from a given product specification. Unlike other tools, it doesn't
promise artificial general intelligence but offers a versatile alternative and allows
developers to create custom applications.

Sweep
Sweep is an assistant that turns Github issues into Github pull requests, suggests
fixes for the issue, and writes/pushes code to Github via a pull request while
addressing comments made on the pull request.

Planning Workflow

Idea
(human + AI)

Writing
Spec/PRD

(human + AI)

Planning/
Estimation

(human + AI)

Task
Breakdown /
Jira Tickets

(human + AI)

Coding/
Debugging

(human + AI)

Create PRs/
Code Review
(human + AI)

Maintenance,
Updates

(human + AI)

Monitoring
(human + AI)

Production
Deployment
(human + AI)

Sandbox
Deployment
(human + AI)

QA/Testing
(human + AI)

Deployment Workflow

Coding

10

The evolution of agent-based coding assistants necessitates a shift in PRD development,
requiring developers and project managers to craft documents that an agent can convert
into actual code. This approach leverages not only the coding capabilities of an LLM but also
its reasoning abilities for devising the project structure. Thus, akin to having personal junior
developers, these assistants serve to enhance project management efficiency and output
quality.

Testing methodology & evaluation metrics
Our internal research and development team examined the capabilities of several coding
assistants and chose two for experimentation due to the depth of features available, such
as fine-tuning the model and the ability to create a secure development environment that
protects our proprietary code and information. We used our own internal, chat-based GPT
solution enhanced by these coding assistants.

Then, we chose internal Turing developers who were actively engaged in application
development work using the same programming languages and working on similar
projects. This consisted of both developers who had used a coding assistant before and
developers who hadn't.

The experiment included full-stack developers, data scientists, data engineers, and ML
engineers.

AI coding assistant selection
While running experiment 1, we experienced adoption issues with our experimental group. A
major issue with tooling adoption, due to the experiment group’s remote employment, is
they work within a fully cloud-based workstation. However, most of the existing coding
assistants are designed for local integrated development environments (IDEs).

As a result, we additionally sourced a cloud-native coding assistant, which aligned better to
the experimental group’s development behaviors for experiment 2.

Methodology
Pre-intervention measurements

1. Gather engineer performance ratings and code quality metrics from team leads or
managers for each participant.

2. Measure the number of lines of code (LOCs) and the number of successful pull
requests (PRs) merged by each participant within a specified time frame.

3. Record pre-intervention measurements for both the experimental and control groups.

11

Intervention
1. Provide training and resources to the experimental group to help them effectively use

the assistant in their daily work.
2. Encourage the experimental group to use the assistant for their tasks, including

automating unit tests and writing Cypress tests.

Post-intervention measurements
1. Gather engineer performance ratings and code quality metrics from team leads or

managers for each participant.
2. Measure the number of LOCs and the number of successfully reviewed and merged

PRs generated by each participant within a specified time frame after the intervention.
3. Record post-intervention measurements for both the experimental and control

groups.

Data analysis
1. Compare the pre- and post-intervention measurements of engineer performance

ratings, code quality metrics, LOCs, and PRs for the experimental group to assess the
efficiency improvement.

2. Compare the post-intervention measurements of the experimental group with the
control group to evaluate the effectiveness of the intervention.

Time to complete tasks
1. Investigate the feasibility of measuring the time to complete tasks using Jira tickets.
2. If feasible, include time to complete tasks as an additional evaluation metric.

Evaluation metrics
Primary metrics

1. Change in engineer performance ratings
2. Change in code quality metrics
3. Change in the number of pull requests (PRs)
4. Change in the number of lines of code (LOCs)

Secondary metrics
1. Time to complete tasks (if feasible)
2. Qualitative feedback from participants regarding the usability and effectiveness of

the internal GPT solution and the assistant
3. Internal GPT usage data

12

Experiment setup
The experiment included full-stack developers, data scientists, and data and ML engineers.
We measured PR merge rates 5 weeks before and after assistant access for experiment 1,
and 4 weeks before and after access for experiment 2. The developers selected for this
experiment were divided into three groups:

Merging group A and group C data in results
Since we observed PR increases in both groups A and C, we believe these two groups
represent the different stages of efficiency improvement from the assistant. Thus, it’s fairer
to merge and compare them against those without the assistant.

Findings and analysis
Due to statistical outliers, like exceptionally large increases in results that were far out of
band compared to others, we filtered some developers out of the results of this experiment.

Figure 5 - Results from AI coding assistant experiment 1

Group A No previous experience with a coding assistant. Given access to the assistant during
the experiment.

Group B No previous experience with a coding assistant. Not given access to the assistant
during the experiment.

Group C Previous experience with a coding assistant. Given access to the assistant during
the experiment.

Group Participant count PRs before PRs after % change

A 11 128 177 38.3%

B 25 620 547 -11.8%

C 22 475 519 9.3%

A + C 34 603 696 15.4%

B
(After assistant

access)
37 565 541 -4.2%

13

Figure 6 - Results from AI coding assistant experiment 2

We saw an increase in successfully reviewed PRs, regardless
of assistant
This is based on the results from both group A and group C. Group A shows a 38.3% to 49.7%
increase in PRs, likely due to the developers using a coding assistant for the first time and
having heavy initial productivity gains. Group C shows a 9.3% to 27.5% increase in PRs. These
developers have used a coding assistant previously, but we still see improvement despite
their familiarity.

Productivity improvement continues over time, regardless
of assistant
Even with developers who had been using assistants since they were first commercially
available, about 6 months ago, they were still experiencing efficiency gains. There’s
potential for further productivity improvement as developers are given more training on
ways to use these assistants.

Larger increase in group A with experiment 2
Due to the aforementioned filtering of out-of-band results, the sample size is relatively low
and may contribute to the larger variance in final results. However, the increase in PRs is
high as these developers tend to be higher intent ones who would spend more time testing
new technology, so we’re being conservative when measuring the productivity gain. This is
further impacted by experiment 2 having easier and higher adoption rates due to the
cloud-based nature of the assistant used.

Group Participant count PRs before PRs after % change

A 16 143 214 49.7%

B 49 450 497 10.4%

C 24 378 482 27.5%

A + C 40 521 696 33.6%

B
(After assistant

access)
49 971 1193 22.9%

14

Changes with group B
During experiment 1, group B showed a -11.8%, which measures their productivity without a
coding assistant. Afterwards, we provided them with a coding assistant and minimal
training. The -4.2% result for their group is based on the initial results of this access and
shows that even without much training they’re able to show modest productivity gains.

For experiment 2, some of group B’s 10.4% change in productivity is attributable to common
development project fluctuations. Again, we provided this group with coding assistant
access after the experiment, with minimal training, and saw a 22.9% change in productivity.

We saw a maximum average 33% productivity improvement
With groups A and C, we saw productivity improvements via successful PRs from 15-33%.
Our research indicates that AI coding assistants can significantly enhance developer
productivity by automating repetitive tasks, providing real-time assistance, and improving
code quality.

With this early evidence, we believe further developer training on using these assistants
optimally will lead to even higher productivity gains.

Further improvements on the horizon
Today, most coding assistants are based on GPT-3.5 or an open source equivalent. GPT-4 is
more powerful, but has higher latency and associated costs, so it’s less suitable for coding
autocomplete use cases today. However, we expect GPT-4 equivalents to become faster
and cheaper in the coming year—pushing productivity enhancements even farther.

Additionally, retrieval-augmented generation (RAG) shows promise in supporting greater
coding assistant capabilities. RAG is an AI framework that enhances LLMs by retrieving
information from an external knowledge base. This knowledge base allows LLMs to have
access to the most accurate, up-to-date information on one or more subjects. This means
coding assistants could train on and interpret extremely large code bases and not just the
current and related files it may train on today.

15

Conclusion
Engineering excellence and AI-powered speed are within reach for most businesses willing
to invest in AI coding assistants. However, building the necessary infrastructure in house to
support it may prove challenging.

Considerations for adoption
Look for a versatile coding assistant
You want an assistant that can autocomplete lines of code and entire files, understand the
local codebase via indexing, and debug potential issues by reading error messages or stack
information.

Invest in more powerful LLM models
More powerful LLM models, including GPT-4 and Duet AI, are expected to provide more
positive ROI.

Diversify to avoid productivity bottlenecks
Software developers typically spend ~30% of their time coding with the rest on other
development activities. This includes planning, debugging, integration, deployment, QA, and
maintenance. As we continue to see enhancements for coding, better ROI will come from
similar AI tooling for productivity improvements across these other tasks.

Consult third-party expertise
We recommend working with vendors who have experience building and working with these
kinds of AI solutions to build a Center of Excellence (CoE) within your organization to make
the strategy, adoption, and implementation easier.

Alternatively, leveraging vendors who can provide engineering solutions using this
technology may be the most economical in the short term, allowing your business to enjoy
the operational efficiency and faster go-to-market without the financial and time
investments needed to operate at scale. This also helps overcome the challenge of ongoing
training and support needed to maximize the benefits of these tools.

Despite these challenges, the overall impact of AI coding assistants on the software
development landscape is positive, offering increased flexibility, scalability, and reach.

16

Based in Palo Alto, California, Turing is the world’s first AI-powered tech services company. It
has reimagined tech services from the ground up with AI by offering AI-vetted and matched
talent, AI-accelerated development, and access to AI transformation experts who have built
many of the most iconic Silicon Valley companies.

Founded in 2018, the company has experienced tremendous growth with over two million
global developers on its Talent Cloud and 900+ clients. Turing has received numerous
awards, including Forbes’s 2022 “One of America’s Best Startup Employers,” being ranked #1
in The Information’s 2021 Annual List of most promising B2B Companies and Fast Company’s
“Annual List of the World’s Most Innovative Companies.” The company's most recent private
fundraising round was oversubscribed and valued the company at $1.1 billion. Subsequent
oversubscribed SAFEs were completed on a $4 billion valuation cap. The company’s
leadership team comprises both AI technologists from leading organizations including
Meta, Google, Microsoft, Apple, Amazon, Twitter, Stanford, Caltech, MIT as well as tech
consulting veterans from Accenture, Cognizant, Capgemini, McKinsey, Bain, and more.

About Turing

What can the world’s first
AI-powered tech services
company do for you?
With our product engineering expertise, boundaryless developer
network, and AI-accelerated development? Anything.

Turing helps you build and modernize software products and get to
market faster. In a world where AI transformation is the new digital
transformation, you can trust Turing.

Learn more at turing.com

https://go.turing.com/build-apps-faster?s=brand_ebook_customer&n=embed_230828_imc_008a&utm_source=ebook&utm_medium=embed&utm_campaign=230828_customer_brand_imc&utm_content=build-apps-faster-lp&utm_term=hire-services_008a

